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Mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous
description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert
spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior
to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces (L2 space mainly),
and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as
values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.[1]

These formulations of quantum mechanics continue to be used today. At the heart of the description are ideas of quantum state
and quantum observables, which are radically different from those used in previous models of physical reality. While the
mathematics permits calculation of many quantities that can be measured experimentally, there is a definite theoretical limit to
values that can be simultaneously measured. This limitation was first elucidated by Heisenberg through a thought experiment, and
is represented mathematically in the new formalism by the non-commutativity of operators representing quantum observables.

Prior to the development of quantum mechanics as a separate theory, the mathematics used in physics consisted mainly of formal
mathematical analysis, beginning with calculus, and increasing in complexity up to differential geometry and partial differential
equations. Probability theory was used in statistical mechanics. Geometric intuition played a strong role in the first two and,
accordingly, theories of relativity were formulated entirely in terms of differential geometric concepts. The phenomenology of
quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics
(around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in
particular within the same mathematical structures. The most sophisticated example of this is the Sommerfeld–Wilson–Ishiwara
quantization rule, which was formulated entirely on the classical phase space.
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In the 1890s, Planck was able to derive the blackbody spectrum, which was later used to avoid the classical ultraviolet catastrophe
by making the unorthodox assumption that, in the interaction of electromagnetic radiation with matter, energy could only be
exchanged in discrete units which he called quanta. Planck postulated a direct proportionality between the frequency of radiation
and the quantum of energy at that frequency. The proportionality constant, h, is now called Planck's constant in his honor.

In 1905, Einstein explained certain features of the photoelectric effect by assuming that Planck's energy quanta were actual
particles, which were later dubbed photons.

All of these developments were phenomenological and challenged the theoretical
physics of the time. Bohr and Sommerfeld went on to modify classical mechanics in an
attempt to deduce the Bohr model from first principles. They proposed that, of all
closed classical orbits traced by a mechanical system in its phase space, only the ones
that enclosed an area which was a multiple of Planck's constant were actually allowed.
The most sophisticated version of this formalism was the so-called Sommerfeld–
Wilson–Ishiwara quantization. Although the Bohr model of the hydrogen atom could
be explained in this way, the spectrum of the helium atom (classically an unsolvable 3-
body problem) could not be predicted. The mathematical status of quantum theory
remained uncertain for some time.

In 1923, de Broglie proposed that wave–particle duality applied not only to photons
but to electrons and every other physical system.

The situation changed rapidly in the years 1925–1930, when working mathematical
foundations were found through the groundbreaking work of Erwin Schrödinger,
Werner Heisenberg, Max Born, Pascual Jordan, and the foundational work of John von
Neumann, Hermann Weyl and Paul Dirac, and it became possible to unify several different approaches in terms of a fresh set of
ideas. The physical interpretation of the theory was also clarified in these years after Werner Heisenberg discovered the
uncertainty relations and Niels Bohr introduced the idea of complementarity.

Werner Heisenberg's matrix mechanics was the first successful attempt at replicating the observed quantization of atomic spectra.
Later in the same year, Schrödinger created his wave mechanics. Schrödinger's formalism was considered easier to understand,
visualize and calculate as it led to differential equations, which physicists were already familiar with solving. Within a year, it was
shown that the two theories were equivalent.

Schrödinger himself initially did not understand the fundamental probabilistic nature of quantum mechanics, as he thought that
the absolute square of the wave function of an electron should be interpreted as the charge density of an object smeared out over an
extended, possibly infinite, volume of space. It was Max Born who introduced the interpretation of the absolute square of the wave
function as the probability distribution of the position of a pointlike object. Born's idea was soon taken over by Niels Bohr in
Copenhagen who then became the "father" of the Copenhagen interpretation of quantum mechanics. Schrödinger's wave function
can be seen to be closely related to the classical Hamilton–Jacobi equation. The correspondence to classical mechanics was even
more explicit, although somewhat more formal, in Heisenberg's matrix mechanics. In his PhD thesis project, Paul Dirac[2]

discovered that the equation for the operators in the Heisenberg representation, as it is now called, closely translates to classical
equations for the dynamics of certain quantities in the Hamiltonian formalism of classical mechanics, when one expresses them
through Poisson brackets, a procedure now known as canonical quantization.

To be more precise, already before Schrödinger, the young postdoctoral fellow Werner Heisenberg invented his matrix mechanics,
which was the first correct quantum mechanics–– the essential breakthrough. Heisenberg's matrix mechanics formulation was
based on algebras of infinite matrices, a very radical formulation in light of the mathematics of classical physics, although he
started from the index-terminology of the experimentalists of that time, not even aware that his "index-schemes" were matrices, as
Born soon pointed out to him. In fact, in these early years, linear algebra was not generally popular with physicists in its present
form.

Although Schrödinger himself after a year proved the equivalence of his wave-mechanics and Heisenberg's matrix mechanics, the
reconciliation of the two approaches and their modern abstraction as motions in Hilbert space is generally attributed to Paul Dirac,
who wrote a lucid account in his 1930 classic The Principles of Quantum Mechanics. He is the third, and possibly most important,
pillar of that field (he soon was the only one to have discovered a relativistic generalization of the theory). In his above-mentioned
account, he introduced the bra–ket notation, together with an abstract formulation in terms of the Hilbert space used in functional
analysis; he showed that Schrödinger's and Heisenberg's approaches were two different representations of the same theory, and
found a third, most general one, which represented the dynamics of the system. His work was particularly fruitful in all kinds of
generalizations of the field.

The "new quantum theory"
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The first complete mathematical formulation of this approach, known as the Dirac–von Neumann axioms, is generally credited to
John von Neumann's 1932 book Mathematical Foundations of Quantum Mechanics, although Hermann Weyl had already
referred to Hilbert spaces (which he called unitary spaces) in his 1927 classic paper and book. It was developed in parallel with a
new approach to the mathematical spectral theory based on linear operators rather than the quadratic forms that were David
Hilbert's approach a generation earlier. Though theories of quantum mechanics continue to evolve to this day, there is a basic
framework for the mathematical formulation of quantum mechanics which underlies most approaches and can be traced back to
the mathematical work of John von Neumann. In other words, discussions about interpretation of the theory, and extensions to it,
are now mostly conducted on the basis of shared assumptions about the mathematical foundations.

The application of the new quantum theory to electromagnetism resulted in quantum field theory, which was developed starting
around 1930. Quantum field theory has driven the development of more sophisticated formulations of quantum mechanics, of
which the ones presented here are simple special cases.

Path integral formulation
Phase-space formulation of quantum mechanics & geometric quantization
quantum field theory in curved spacetime
axiomatic, algebraic and constructive quantum field theory
C*-algebra formalism
Generalized statistical model of quantum mechanics

A related topic is the relationship to classical mechanics. Any new physical theory is supposed to reduce to successful old theories
in some approximation. For quantum mechanics, this translates into the need to study the so-called classical limit of quantum
mechanics. Also, as Bohr emphasized, human cognitive abilities and language are inextricably linked to the classical realm, and so
classical descriptions are intuitively more accessible than quantum ones. In particular, quantization, namely the construction of a
quantum theory whose classical limit is a given and known classical theory, becomes an important area of quantum physics in
itself.

Finally, some of the originators of quantum theory (notably Einstein and Schrödinger) were unhappy with what they thought were
the philosophical implications of quantum mechanics. In particular, Einstein took the position that quantum mechanics must be
incomplete, which motivated research into so-called hidden-variable theories. The issue of hidden variables has become in part an
experimental issue with the help of quantum optics.

A physical system is generally described by three basic ingredients: states; observables; and dynamics (or law of time evolution) or,
more generally, a group of physical symmetries. A classical description can be given in a fairly direct way by a phase space model of
mechanics: states are points in a symplectic phase space, observables are real-valued functions on it, time evolution is given by a
one-parameter group of symplectic transformations of the phase space, and physical symmetries are realized by symplectic
transformations. A quantum description normally consists of a Hilbert space of states, observables are self-adjoint operators on the
space of states, time evolution is given by a one-parameter group of unitary transformations on the Hilbert space of states, and
physical symmetries are realized by unitary transformations. (It is possible, to map this Hilbert-space picture to a phase space
formulation, invertibly. See below.)

The following summary of the mathematical framework of quantum mechanics can be partly traced back to the Dirac–von
Neumann axioms. The postulates are canonically presented in six statements, though there are many important points to each. [3]

Each physical system is associated with a (topologically) separable complex Hilbert space H with inner product ⟨φ|ψ⟩. Rays (that
is, subspaces of complex dimension 1) in H are associated with quantum states of the system.

Postulate I
The state of an isolated physical system is represented,

at a fixed time , by a state vector  belonging to a
Hilbert space  called the state space.

Later developments

Mathematical structure of quantum mechanics

Postulates of quantum mechanics

Description of the state of a system
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In other words, quantum states can be identified with equivalence classes of vectors of length 1 in H, where two vectors represent
the same state if they differ only by a phase factor. Separability is a mathematically convenient hypothesis, with the physical
interpretation that countably many observations are enough to uniquely determine the state. "A quantum mechanical state is a ray
in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that
the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than
ray is very difficult to avoid."[4]

The Hilbert space of a composite system is the Hilbert space tensor product of the state spaces associated with the component
systems (for instance, J. M. Jauch, Foundations of quantum mechanics, section 11.7). For a non-relativistic system consisting of a
finite number of distinguishable particles, the component systems are the individual particles.

Physical observables are represented by Hermitian matrices on H. Since these operators are Hermitian, the measurement is always
a real value. If the spectrum of the observable is discrete, then the possible results are quantized.

Postulate II
Every measurable physical quantity  is described by a
Hermitian operator  acting in the state space . This
operator is an observable, meaning that its eigenvectors

form a basis for .

By spectral theory, we can associate a probability measure to the values of A in any state ψ. We can also show that the possible
values of the observable A in any state must belong to the spectrum of A. The expectation value (in the sense of probability theory)
of the observable A for the system in state represented by the unit vector ψ ∈ H is .

Postulate III
The result of measuring a physical quantity  must be
one of the eigenvalues of the corresponding observable 

.

In the special case A has only discrete spectrum, the possible outcomes of measuring A are its eigenvalues. More precisely, if we
represent the state ψ in the basis formed by the eigenvectors of A, then the square of the modulus of the component attached to a
given eigenvector is the probability of observing its corresponding eigenvalue.

Postulate IV
When the physical quantity  is measured on a system

in a normalized state , the probability of obtaining an
eigenvalue (denoted  for discrete spectra and  for

continuous spectra) of the corresponding observable 
is given by amplitude squared of the appropriate wave
function (projection onto corresponding eigenvector).  

 

More generally, a state can be represented by a so-called density operator, which is a trace class, nonnegative self-adjoint operator
ρ normalized to be of trace 1. The expected value of A in the state ρ is .

Description of physical quantities

Measurement of physical quantities

Effect of measurement on the state
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When a measurement is performed, only one result is obtained (according to some interpretations of quantum mechanics). This is
modeled mathematically as the processing of additional information from the measurement, confining the probabilities of an
immediate second measurement of the same observable. In the case of a discrete, non-degenerate spectrum, two sequential
measurements of the same observable will always give the same value assuming the second immediately follows the first. Therefore
the state vector must change as a result of measurement, and collapse onto the eigensubspace associated with the eigenvalue
measured.

Postulate V
If the measurement of the physical quantity  on the

system in the state  gives the result , then the state
of the system immediately after the measurement is the

normalized projection of  onto the eigensubspace
associated with  

 

If ρψ is the orthogonal projector onto the one-dimensional subspace of H spanned by |ψ⟩, then .

Though it is possible to derive the Schrödinger equation, which describes how a state vector evolves in time, most texts assert the
equation as a postulate. Common derivations include using the DeBroglie hypothesis or path integrals.

Postulate VI
The time evolution of the state vector  is governed

by the Schrödinger equation, where  is the
observable associated with the total energy of the system

(called the Hamiltonian) 
 

Physical symmetries act on the Hilbert space of quantum states unitarily or antiunitarily due to Wigner's theorem
(supersymmetry is another matter entirely).

Physical observables are represented by Hermitian matrices on H.

Density operators are those that are in the closure of the convex hull of the one-dimensional orthogonal projectors.
Conversely, one-dimensional orthogonal projectors are extreme points of the set of density operators. Physicists also call one-
dimensional orthogonal projectors pure states and other density operators mixed states.

One can in this formalism state Heisenberg's uncertainty principle and prove it as a theorem, although the exact historical
sequence of events, concerning who derived what and under which framework, is the subject of historical investigations outside the
scope of this article.

Furthermore, to the postulates of quantum mechanics one should also add basic statements on the properties of spin and Pauli's
exclusion principle, see below.

In the so-called Schrödinger picture of quantum mechanics, the dynamics is given as follows:

Time evolution of a system

Other implications of the postulates

Pictures of dynamics
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The time evolution of the state is given by a differentiable function from the real numbers R, representing instants of time, to the
Hilbert space of system states. This map is characterized by a differential equation as follows: If |ψ(t)⟩ denotes the state of the
system at any one time t, the following Schrödinger equation holds:

Schrödinger equation (general)

where H is a densely defined self-adjoint operator, called the system Hamiltonian, i is the imaginary unit and ħ is the reduced
Planck constant. As an observable, H corresponds to the total energy of the system.

Alternatively, by Stone's theorem one can state that there is a strongly continuous one-parameter unitary map U(t): H → H such
that

for all times s, t. The existence of a self-adjoint Hamiltonian H such that

is a consequence of Stone's theorem on one-parameter unitary groups. It is assumed that H does not depend on time and that the
perturbation starts at t0 = 0; otherwise one must use the Dyson series, formally written as

where  is Dyson's time-ordering symbol.

(This symbol permutes a product of noncommuting operators of the form

into the uniquely determined re-ordered expression

 with 

The result is a causal chain, the primary cause in the past on the utmost r.h.s., and finally the present effect on the utmost l.h.s. .)

The Heisenberg picture of quantum mechanics focuses on observables and instead of considering states as varying in time, it
regards the states as fixed and the observables as changing. To go from the Schrödinger to the Heisenberg picture one needs
to define time-independent states and time-dependent operators thus:

It is then easily checked that the expected values of all observables are the same in both pictures

and that the time-dependent Heisenberg operators satisfy

Heisenberg picture (general)
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which is true for time-dependent A = A(t). Notice the commutator expression is purely formal when one of the operators is
unbounded. One would specify a representation for the expression to make sense of it.

The so-called Dirac picture or interaction picture has time-dependent states and observables, evolving with respect to different
Hamiltonians. This picture is most useful when the evolution of the observables can be solved exactly, confining any
complications to the evolution of the states. For this reason, the Hamiltonian for the observables is called "free Hamiltonian"
and the Hamiltonian for the states is called "interaction Hamiltonian". In symbols:

Dirac picture

The interaction picture does not always exist, though. In interacting quantum field theories, Haag's theorem states that the
interaction picture does not exist. This is because the Hamiltonian cannot be split into a free and an interacting part within a
superselection sector. Moreover, even if in the Schrödinger picture the Hamiltonian does not depend on time, e.g. H = H0 + V, in
the interaction picture it does, at least, if V does not commute with H0, since

.

So the above-mentioned Dyson-series has to be used anyhow.

The Heisenberg picture is the closest to classical Hamiltonian mechanics (for example, the commutators appearing in the above
equations directly translate into the classical Poisson brackets); but this is already rather "high-browed", and the Schrödinger
picture is considered easiest to visualize and understand by most people, to judge from pedagogical accounts of quantum
mechanics. The Dirac picture is the one used in perturbation theory, and is specially associated to quantum field theory and many-
body physics.

Similar equations can be written for any one-parameter unitary group of symmetries of the physical system. Time would be
replaced by a suitable coordinate parameterizing the unitary group (for instance, a rotation angle, or a translation distance) and the
Hamiltonian would be replaced by the conserved quantity associated with the symmetry (for instance, angular or linear
momentum).

Summary:

Evolution Picture ()

of: Heisenberg Interaction Schrödinger

Ket state constant

Observable constant

Density
matrix constant

The original form of the Schrödinger equation depends on choosing a particular representation of Heisenberg's canonical
commutation relations. The Stone–von Neumann theorem dictates that all irreducible representations of the finite-dimensional
Heisenberg commutation relations are unitarily equivalent. A systematic understanding of its consequences has led to the phase

Representations
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space formulation of quantum mechanics, which works in full phase space instead of Hilbert space, so then with a more intuitive
link to the classical limit thereof. This picture also simplifies considerations of quantization, the deformation extension from
classical to quantum mechanics.

The quantum harmonic oscillator is an exactly solvable system where the different representations are easily compared. There,
apart from the Heisenberg, or Schrödinger (position or momentum), or phase-space representations, one also encounters the Fock
(number) representation and the Segal–Bargmann (Fock-space or coherent state) representation (named after Irving Segal and
Valentine Bargmann). All four are unitarily equivalent.

The framework presented so far singles out time as the parameter that everything depends on. It is possible to formulate
mechanics in such a way that time becomes itself an observable associated with a self-adjoint operator. At the classical level, it is
possible to arbitrarily parameterize the trajectories of particles in terms of an unphysical parameter s, and in that case the time t
becomes an additional generalized coordinate of the physical system. At the quantum level, translations in s would be generated by
a "Hamiltonian" H − E, where E is the energy operator and H is the "ordinary" Hamiltonian. However, since s is an unphysical
parameter, physical states must be left invariant by "s-evolution", and so the physical state space is the kernel of H − E (this
requires the use of a rigged Hilbert space and a renormalization of the norm).

This is related to the quantization of constrained systems and quantization of gauge theories. It is also possible to formulate a
quantum theory of "events" where time becomes an observable (see D. Edwards).

In addition to their other properties, all particles possess a quantity called spin, an intrinsic angular momentum. Despite the
name, particles do not literally spin around an axis, and quantum mechanical spin has no correspondence in classical physics. In
the position representation, a spinless wavefunction has position r and time t as continuous variables, ψ = ψ(r, t). For spin
wavefunctions the spin is an additional discrete variable: ψ = ψ(r, t, σ), where σ takes the values;

That is, the state of a single particle with spin S is represented by a (2S + 1)-component spinor of complex-valued wave functions.

Two classes of particles with very different behaviour are bosons which have integer spin (S = 0, 1, 2...), and fermions possessing
half-integer spin (S = 1⁄2, 3⁄2, 5⁄2, ...).

The property of spin relates to another basic property concerning systems of N identical particles: Pauli's exclusion principle,
which is a consequence of the following permutation behaviour of an N-particle wave function; again in the position representation
one must postulate that for the transposition of any two of the N particles one always should have

Pauli principle

i.e., on transposition of the arguments of any two particles the wavefunction should reproduce, apart from a prefactor (−1)2S

which is +1 for bosons, but (−1) for fermions. Electrons are fermions with S = 1/2; quanta of light are bosons with S = 1. In
nonrelativistic quantum mechanics all particles are either bosons or fermions; in relativistic quantum theories also
"supersymmetric" theories exist, where a particle is a linear combination of a bosonic and a fermionic part. Only in dimension
d = 2 can one construct entities where (−1)2S is replaced by an arbitrary complex number with magnitude 1, called anyons.

Although spin and the Pauli principle can only be derived from relativistic generalizations of quantum mechanics the properties
mentioned in the last two paragraphs belong to the basic postulates already in the non-relativistic limit. Especially, many
important properties in natural science, e.g. the periodic system of chemistry, are consequences of the two properties.

Time as an operator

Spin

Pauli's principle

The problem of measurement
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The picture given in the preceding paragraphs is sufficient for description of a completely isolated system. However, it fails to
account for one of the main differences between quantum mechanics and classical mechanics, that is, the effects of
measurement.[5] The von Neumann description of quantum measurement of an observable A, when the system is prepared in a
pure state ψ is the following (note, however, that von Neumann's description dates back to the 1930s and is based on experiments
as performed during that time – more specifically the Compton–Simon experiment; it is not applicable to most present-day
measurements within the quantum domain):

Let A have spectral resolution

where EA is the resolution of the identity (also called projection-valued measure) associated with A. Then the probability of the

measurement outcome lying in an interval B of R is |EA(B) ψ|2. In other words, the probability is obtained by integrating the
characteristic function of B against the countably additive measure

If the measured value is contained in B, then immediately after the measurement, the system will be in the (generally non-
normalized) state EA(B)ψ. If the measured value does not lie in B, replace B by its complement for the above state.

For example, suppose the state space is the n-dimensional complex Hilbert space Cn and A is a Hermitian matrix with eigenvalues
λi, with corresponding eigenvectors ψi. The projection-valued measure associated with A, EA, is then

where B is a Borel set containing only the single eigenvalue λi. If the system is prepared in state

Then the probability of a measurement returning the value λi can be calculated by integrating the spectral measure

over Bi. This gives trivially

The characteristic property of the von Neumann measurement scheme is that repeating the same measurement will give the same
results. This is also called the projection postulate.

A more general formulation replaces the projection-valued measure with a positive-operator valued measure (POVM). To
illustrate, take again the finite-dimensional case. Here we would replace the rank-1 projections

by a finite set of positive operators

whose sum is still the identity operator as before (the resolution of identity). Just as a set of possible outcomes {λ1 ... λn} is
associated to a projection-valued measure, the same can be said for a POVM. Suppose the measurement outcome is λi. Instead of
collapsing to the (unnormalized) state

after the measurement, the system now will be in the state
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Since the Fi Fi* operators need not be mutually orthogonal projections, the projection postulate of von Neumann no longer holds.

The same formulation applies to general mixed states.

In von Neumann's approach, the state transformation due to measurement is distinct from that due to time evolution in several
ways. For example, time evolution is deterministic and unitary whereas measurement is non-deterministic and non-unitary.
However, since both types of state transformation take one quantum state to another, this difference was viewed by many as
unsatisfactory. The POVM formalism views measurement as one among many other quantum operations, which are described by
completely positive maps which do not increase the trace.

In any case it seems that the above-mentioned problems can only be resolved if the time evolution included not only the quantum
system, but also, and essentially, the classical measurement apparatus (see above).

An alternative interpretation of measurement is Everett's relative state interpretation, which was later dubbed the "many-worlds
interpretation" of quantum physics.

Part of the folklore of the subject concerns the mathematical physics textbook Methods of Mathematical Physics put together by
Richard Courant from David Hilbert's Göttingen University courses. The story is told (by mathematicians) that physicists had
dismissed the material as not interesting in the current research areas, until the advent of Schrödinger's equation. At that point it
was realised that the mathematics of the new quantum mechanics was already laid out in it. It is also said that Heisenberg had
consulted Hilbert about his matrix mechanics, and Hilbert observed that his own experience with infinite-dimensional matrices
had derived from differential equations, advice which Heisenberg ignored, missing the opportunity to unify the theory as Weyl and
Dirac did a few years later. Whatever the basis of the anecdotes, the mathematics of the theory was conventional at the time,
whereas the physics was radically new.

The main tools include:

linear algebra: complex numbers, eigenvectors, eigenvalues
functional analysis: Hilbert spaces, linear operators, spectral theory
differential equations: partial differential equations, separation of variables, ordinary differential equations, Sturm–Liouville
theory, eigenfunctions
harmonic analysis: Fourier transforms

1. Frederick W. Byron, Robert W. Fuller; Mathematics of classical and quantum physics (https://books.google.com/books?id=D2
Xs8NUKecAC&pg=PA277&lpg=PA277&dq=mathematical+formulation+of+quantum+mechanics); Courier Dover Publications,
1992.
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ps://doi.org/10.1098%2Frspa.1925.0150).
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